2,330 research outputs found

    Ropinirole in restless legs syndrome and periodic limb movement disorder

    Get PDF
    Restless legs syndrome and periodic limb movement disorder of sleep are now recognized as prevalent, distinct, yet overlapping disorders affecting all age groups. Although delineation of the mechanisms underlying these disorders continues to be the focus of very intense research efforts, it has become apparent that there is a prominent role for dopaminergic agents in the clinical management of these patients. Among the various dopaminergic drugs, ropinirole has undergone relatively intense and critical scrutiny, and appears to provide a safe and efficacious treatment option for patients with these two conditions. The more recent development of a controlled formulation for this drug is likely to yield additional benefits such as improved adherence and reduced fluctuations in daytime and nighttime symptoms. However, there is not enough evidence at this time to support such assumption

    Analysis of the influence of temperature and hold time in the solid carburization process on the hardness and microstructure of AISI 1020 and 1045 using Oil Cooling

    Get PDF
    This study aims to determine the effect of variations in temperature and holding time on the value of hardness and microstructure in the carburizing process of low-carbon steel and medium-carbon steel. The temperature variations used during the carburizing process were 850oC and 950oC with variations of the holding time used being 15 minutes and 30 minutes. The types of materials used are AISI 1020 steel and AISI 1045 steel. In the carburizing process, the carbon source used is wood charcoal powder. After the process of adding carbon elements, the material will be quenched in the oil medium. The tests carried out were hardness testing and microstructure observations. The hardness test used the B-scale Rockwell hardness test method. The surface etching process of the material used a nital etching solution, namely a mixture of 3% nitric acid (HNO3) and 97% ethanol. The results showed that the lowest increase in hardness occurred at 850oC with a holding time of 15 minutes, namely 82.00 HRB for AISI 1020 steel and 95.66 HRB for AISI 1045 steel. Meanwhile, the highest increase in hardness occurred at a temperature of 950oC with a holding time of 30 minutes. namely 93.00 HRB on AISI 1020 steel and 105.33 HRB on AISI 1045 steel. This shows that the higher the temperature and the longer the holding time, the higher the hardness value

    Desarrollo de sistemas mesoporosos modificados químicamente para el transporte y liberación selectiva y controlada de fármacos

    Get PDF
    La presente Tesis Doctoral titulada “Desarrollo de sistemas mesoporosos modificados químicamente para el transporte y liberación selectiva y controlada de fármacos” está centrada en el desarrollo de nuevos sistemas para la detección cromo-fluorogénica de moléculas objetivo, así como en el desarrollo de materiales híbridos orgánicos-inorgánicos para la liberación controlada de fármacos, colorantes y especies fluorescentes, utilizando para ello conceptos de Química Orgánica, Química Supramolecular y de Ciencia de los Materiales. Tanto el desarrollo de procedimientos analíticos para la detección óptica de plaguicidas organofosforados (OPs) utilizando quimiosensores o quimiodosímetros, como la remediación de OPs utilizando complejos metálicos con aminoalcoholes, son campos de investigación relativamente nuevos y con grandes perspectivas de futuro. Es por ello que, en la primera parte de la Tesis Doctoral se desarrollan, mediante un primer capítulo de Introducción, los conceptos de quimiosensor y quimiodosímetro, se describe el descubrimiento, propiedades y características más relevantes de los plaguicidas organofosforados y, finalmente, se realiza una extensa revisión del estado del arte, recopilando ejemplos publicados de quimiosensores y quimiodosímetros, así como de métodos remediación de estos plaguicidas organofosforados. En el Capítulo 3 se describe cómo, mediante la utilización de matrices colorimétricas, es posible detectar y discriminar diferentes plaguicidas organofosforados en disoluciones acuosas. La matriz desarrollada está basada en una placa de sílica gel en la que se inmovilizan cromóforos que presentan grupos reactivos, como alcoholes, aminas o piridinas, capaces de reaccionar con ciertos plaguicidas provocando un cambio de color. Gracias a estos cambios de color se pueden detectar, discriminar y clasificar entre los diferentes plaguicidas utilizando herramientas estadísticas. Por otra parte, en el Capítulo 4, se describe la utilización de aminoalcoholes y sus complejos metálicos con oro como organocatalizadores para la remediación de plaguicidas organofosforados. Concretamente, se ha preparado y estudiado un complejo de oro (III) con un diaminoalcohol, que es capaz de promover la ruptura hidrolítica selectiva del enlace P-S en plaguicidas de la familia de los organotiofosfatos, como son el Azinphos-methyl y Methidathion. La segunda parte de esta Tesis Doctoral se centra en el desarrollo de nuevos materiales híbridos orgánico-inorgánicos de sílice mesoporosa, tanto micro como nanométricos, para su aplicación en detección, así como en el campo de la liberación dirigida y controlada de fármacos. El Capítulo 5 es una Introducción general sobre los aspectos más relevantes de la nanotecnología y el desarrollo de materiales híbridos orgánicos-inorgánicos, así como sus posibles aplicaciones. En concreto, se describen algunos ejemplos representativos de materiales híbridos, basados en soportes de sílice mesoporosa y sensibles a estímulos externos, como sistemas de detección y de liberación controlada de fármacos/colorantes. En el Capítulo 7 se describe la síntesis de nuevos nanomateriales híbridos orgánico-inorgánicos de sílice mesoporosa, cargados con distintos colorantes y funcionalizados en su superficie externa con puertas moleculares, concretamente, con un derivado de trifluorometilcetona y con una cadena poliinsaturada semejante a los ácidos grasos. Por un lado, la trifluorometilcetona, selectiva frente al anión peroxinitrito, permite el control de masa desde el interior de los poros a la disolución o al citoplasma celular. Por otro lado, la cadena poliinsaturada, selectiva frente a radicales hidroxilo, es la responsable de permitir la liberación de la carga al medio de estudio. Finalmente, el Capítulo 8 se centra en el desarrollo de nuevos materiales híbridos orgánicos-inorgánicos micrométricos para el tratamiento de enfermedades inflamatorias intestinales. Estos materiales se hallan funcionalizados en su superficie externa con un azoderivado que actúa como puerta molecular para el tratamiento de enfermedades inflamatorias intestinales. Este azoderivado, en presencia de azoreductores, permite la liberación de la carga debido a la hidrólisis del enlace azo (-N=N-). Así mismo, se detallan los estudios realizados para el tratamiento de la colitis inducida por TNBS en ratas Wistar.The present PhD Thesis entitled "Development of chemically modified mesoporous systems for selective and controlled drug delivery" is focused on the development of new chromo-fluorogenic systems for detection of target molecules, as well as the development of hybrid organic-inorganic materials for drug, dyes and fluorescent species controlled release, based using for this concepts of Organic Chemistry, Supramolecular Chemistry and Materials Science. Both the development of analytical procedures for the optical detection of organophosphorus pesticides (OPs) using chemosensors or chemodosimeters, and the remediation of OPs using metal complexes with aminoalcohols, are relatively new fields of research with great future prospects. That is why, in the first part of this Thesis are detailed through an Introduction Chapter, the definitions that explain the different parts that make up the chemosensors and chemodosimeters, the discovery, the properties and the most relevant characteristics of organophosphorus pesticides. Finally, an extensive review of the state of the art, compiling published examples of chemosensors and chemodosimeters, as well as of methods for remediation of these organophosphorus pesticides are presented. In Chapter 3 is described how by means of the use of colorimetric array it is possible to detect and discriminate different organophosphorus pesticides in aqueous solutions. The developed array consists of a silica gel plate covered with different chromophores having reactive groups, such as alcohols, amines or pyridines, able to react with certain pesticides causing a change in colour. These colour changes allow the detected, discrimination and classification of different pesticides using statistical tools. On the other hand, the Chapter 4 focuses on the use of aminoalcohols and their gold complexes for the remediation of organophosphorus pesticides. Specifically, a diaminoalcohol gold (III) complex has been prepared and studied with is capable of the selective promoting hydrolytic rupture of the P-S bond in pesticides of the family of organothiophosphates, such as Azinphos-methyl and Methidathion. The second part of this Thesis focuses on the development of new mesoporous silica organic-inorganic hybrid materials, both micro and nanometric sized, for their application in detection, as well as in drug controlled administration. Chapter 5 is a general Introduction of the most relevant aspects of nanotechnology and the development of organic-inorganic hybrid materials, as well as their possible applications. In particular, some representatives examples of hybrid materials are described, based on mesoporous silica supports, sensitive to external stimuli such as detection systems and drug/dyes controlled release. In Chapter 7 is described the synthesis of new organic-inorganic hybrid nanomaterials, loaded with different dyes and functionalized on their external surface with molecular gates, specifically with a trifluoromethyl ketone derivative and with polyunsaturated chain similar to that of fatty acids. On the one hand, the trifluoromethyl ketone, selective in front of peroxynitrite anion, allows the load control of the load from the interior of the pores to the solution or to the cellular cytoplasm. On the other hand, the polyunsaturated chain, selective to hydroxyl radicals, is responsible for allowing the release of the load to the medium. Finally, Chapter 8 focuses on the development of new organic-inorganic hybrid micromaterials, functionalized on their external surface with an azo-derivative that acts as a molecular gatekeeper for the treatment of inflammatory bowel diseases. This azo-derivative, in the presence of azoreductors allows the liberation of the load, due to the hydrolysis of azo bond (-N=N-). In addition, the studies carried out for the treatment of TNBS-induced colitis in Wistar rats are detailed

    Dynamic-Mechanical and Decomposition Properties of Flax/Basalt Hybrid Laminates Based on an Epoxidized Linseed Oil Polymer

    Full text link
    [EN] This contribution focuses on the development of flax and flax/basalt hybrid reinforced composites based on epoxidized linseed oil (ELO) resin, exploiting the feasibility of different ratios of glutaric anhydride (GA) to maleinized linseed oil (MLO) in the hardener system (50:0, 40:10 and 30:20 wt.%) to provide crosslinked thermosets with balanced properties. The hybrid laminates have been manufactured by resin transfer molding (RTM) and subjected to dynamic-mechanical (DMA) and thermal gravimetry (TGA) analysis. The presence of glutaric anhydride (GA) resulted in hard and relatively brittle flax and flax/basalt laminates, whose loss moduli decreased as the number of basalt plies diminished. Furthermore, the increase in MLO content in the GA:MLO hardener system shifted the glass transition temperatures (T-g) from 70 degrees C to 59 and 56 degrees C, which is representative of a decrease in brittleness of the crosslinked resin. All samples exhibited two stages of their decomposition process irrespective of the MLO content. The latter influenced the residual mass content that increased with the increase of the MLO wt.% from 10 to 30 wt.%, with shifts of the final degradation temperatures from 410 degrees C to 425 degrees C and 445 degrees C, respectively.This research was funded by the Ministry of Science, Innovation, and Universities (MICIU) project numbers MAT2017-84909-C2-2-R.Motoc, DL.; Ferri Azor, JM.; Ferrándiz Bou, S.; Garcia-Garcia, D.; Balart, R. (2021). Dynamic-Mechanical and Decomposition Properties of Flax/Basalt Hybrid Laminates Based on an Epoxidized Linseed Oil Polymer. Polymers. 13(4):1-11. https://doi.org/10.3390/polym1304047911113

    Compatibilization and Characterization of Polylactide and Biopolyethylene Binary Blends by Non-Reactive and Reactive Compatibilization Approaches

    Full text link
    [EN] In this study, different compatibilizing agents were used to analyze their influence on immiscible blends of polylactide (PLA) and biobased high-density polyethylene (bioPE) 80/20 (wt/wt). The compatibilizing agents used were polyethylene vinyl acetate (EVA) with a content of 33% of vinyl acetate, polyvinyl alcohol (PVA), and dicumyl peroxide (DPC). The influence of each compatibilizing agent on the mechanical, thermal, and microstructural properties of the PLA-bioPE blend was studied using different microscopic techniques (i.e., field emission electron microscopy (FESEM), transmission electron microscopy (TEM), and atomic force microscopy with PeakForce quantitative nanomechanical mapping (AFM-QNM)). Compatibilized PLA-bioPE blends showed an improvement in the ductile properties, with EVA being the compatibilizer that provided the highest elongation at break and the highest impact-absorbed energy (Charpy test). In addition, it was observed by means of the different microscopic techniques that the typical droplet-like structure is maintained, but the use of compatibilizers decreases the dimensions of the dispersed droplets, leading to improved interfacial adhesion, being more pronounced in the case of the EVA compatibilizer. Furthermore, the incorporation of the compatibilizers caused a very marked decrease in the crystallinity of the immiscible PLA-bioPE blendThis research was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU), project numbers MAT2017-84909-C2-2-R.Ferri Azor, JM.; Garcia-Garcia, D.; Rayón Encinas, E.; Samper, M.; Balart, R. (2020). Compatibilization and Characterization of Polylactide and Biopolyethylene Binary Blends by Non-Reactive and Reactive Compatibilization Approaches. Polymers. 12(6):1-20. https://doi.org/10.3390/polym12061344S120126Nofar, M., Sacligil, D., Carreau, P. J., Kamal, M. R., & Heuzey, M.-C. (2019). Poly (lactic acid) blends: Processing, properties and applications. International Journal of Biological Macromolecules, 125, 307-360. doi:10.1016/j.ijbiomac.2018.12.002Farto-Vaamonde, X., Auriemma, G., Aquino, R. P., Concheiro, A., & Alvarez-Lorenzo, C. (2019). Post-manufacture loading of filaments and 3D printed PLA scaffolds with prednisolone and dexamethasone for tissue regeneration applications. European Journal of Pharmaceutics and Biopharmaceutics, 141, 100-110. doi:10.1016/j.ejpb.2019.05.018Fajardo, J., Valarezo, L., López, L., & Sarmiento, A. (2013). Experiencies in obtaining polymeric composites reinforced with natural fiber from Ecuador. Ingenius, (9). doi:10.17163/ings.n9.2013.04Ferri, J. M., Garcia-Garcia, D., Carbonell-Verdu, A., Fenollar, O., & Balart, R. (2017). Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. Journal of Applied Polymer Science, 135(4), 45751. doi:10.1002/app.45751Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082Gao, H., Hu, S., Su, F., Zhang, J., & Tang, G. (2011). Mechanical, thermal, and biodegradability properties of PLA/modified starch blends. Polymer Composites, 32(12), 2093-2100. doi:10.1002/pc.21241Arrieta, M. P., López, J., Ferrándiz, S., & Peltzer, M. A. (2013). Characterization of PLA-limonene blends for food packaging applications. Polymer Testing, 32(4), 760-768. doi:10.1016/j.polymertesting.2013.03.016Arrieta, M. P., López, J., Hernández, A., & Rayón, E. (2014). Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255-270. doi:10.1016/j.eurpolymj.2013.11.009Iglesias Montes, M. L., Cyras, V. P., Manfredi, L. B., Pettarín, V., & Fasce, L. A. (2020). Fracture evaluation of plasticized polylactic acid / poly (3-HYDROXYBUTYRATE) blends for commodities replacement in packaging applications. Polymer Testing, 84, 106375. doi:10.1016/j.polymertesting.2020.106375Ferri, J. M., Fenollar, O., Jorda-Vilaplana, A., García-Sanoguera, D., & Balart, R. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polymer International, 65(4), 453-463. doi:10.1002/pi.5079Mittal, V., Akhtar, T., & Matsko, N. (2015). Mechanical, Thermal, Rheological and Morphological Properties of Binary and Ternary Blends of PLA, TPS and PCL. Macromolecular Materials and Engineering, 300(4), 423-435. doi:10.1002/mame.201400332Umamaheswara Rao, R., Venkatanarayana, B., & Suman, K. N. . (2019). Enhancement of Mechanical Properties of PLA/PCL (80/20) Blend by Reinforcing with MMT Nanoclay. Materials Today: Proceedings, 18, 85-97. doi:10.1016/j.matpr.2019.06.280Carbonell-Verdu, A., Ferri, J. M., Dominici, F., Boronat, T., Sanchez-Nacher, L., Balart, R., & Torre, L. (2018). Manufacturing and compatibilization of PLA/PBAT binary blends by cottonseed oil-based derivatives. Express Polymer Letters, 12(9), 808-823. doi:10.3144/expresspolymlett.2018.69Wang, X., Peng, S., Chen, H., Yu, X., & Zhao, X. (2019). Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in-situ reactive compatibilization. Composites Part B: Engineering, 173, 107028. doi:10.1016/j.compositesb.2019.107028Kilic, N. T., Can, B. N., Kodal, M., & Ozkoc, G. (2018). Compatibilization of PLA/PBAT blends by using Epoxy-POSS. Journal of Applied Polymer Science, 136(12), 47217. doi:10.1002/app.47217Gere, D., & Czigany, T. (2020). Future trends of plastic bottle recycling: Compatibilization of PET and PLA. Polymer Testing, 81, 106160. doi:10.1016/j.polymertesting.2019.106160Palma-Ramírez, D., Torres-Huerta, A. M., Domínguez-Crespo, M. A., Del Angel-López, D., Flores-Vela, A. I., & de la Fuente, D. (2019). Data supporting the morphological/topographical properties and the degradability on PET/PLA and PET/chitosan blends. Data in Brief, 25, 104012. doi:10.1016/j.dib.2019.104012Hachemi, R., Belhaneche-Bensemra, N., & Massardier, V. (2013). Elaboration and characterization of bioblends based on PVC/PLA. Journal of Applied Polymer Science, 131(7), n/a-n/a. doi:10.1002/app.40045Nehra, R., Maiti, S. N., & Jacob, J. (2017). Analytical interpretations of static and dynamic mechanical properties of thermoplastic elastomer toughened PLA blends. Journal of Applied Polymer Science, 135(1), 45644. doi:10.1002/app.45644Jašo, V., Cvetinov, M., Rakić, S., & Petrović, Z. S. (2014). Bio-plastics and elastomers from polylactic acid/thermoplastic polyurethane blends. Journal of Applied Polymer Science, 131(22), n/a-n/a. doi:10.1002/app.41104Mandal, D. K., Bhunia, H., & Bajpai, P. K. (2018). Thermal degradation kinetics of PP/PLA nanocomposite blends. Journal of Thermoplastic Composite Materials, 32(12), 1714-1730. doi:10.1177/0892705718805130Azizi, S., Azizi, M., & Sabetzadeh, M. (2019). The Role of Multiwalled Carbon Nanotubes in the Mechanical, Thermal, Rheological, and Electrical Properties of PP/PLA/MWCNTs Nanocomposites. Journal of Composites Science, 3(3), 64. doi:10.3390/jcs3030064Quiles-Carrillo, L., Montanes, N., Jorda-Vilaplana, A., Balart, R., & Torres-Giner, S. (2018). A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends. Journal of Applied Polymer Science, 136(16), 47396. doi:10.1002/app.47396Boubekeur, B., Belhaneche‐Bensemra, N., & Massardier, V. (2020). Low‐Density Polyethylene/Poly(Lactic Acid) Blends Reinforced by Waste Wood Flour. Journal of Vinyl and Additive Technology, 26(4), 443-451. doi:10.1002/vnl.21759Torres Huerta, A. M. (2019). PREPARATION AND DEGRADATION STUDY OF HDPE/PLA POLYMER BLENDS FOR PACKAGING APPLICATIONS. Revista Mexicana de Ingeniería Química, 18(1), 251-271. doi:10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/torresDolores, S. M., Marina Patricia, A., Santiago, F., & Juan, L. (2014). Influence of biodegradable materials in the recycled polystyrene. Journal of Applied Polymer Science, 131(23), n/a-n/a. doi:10.1002/app.41161Samper, M., Bertomeu, D., Arrieta, M., Ferri, J., & López-Martínez, J. (2018). Interference of Biodegradable Plastics in the Polypropylene Recycling Process. Materials, 11(10), 1886. doi:10.3390/ma11101886Hermes, H. E., Higgins, J. S., & Bucknall, D. G. (1997). Investigation of the melt interface between polyethylene and polystyrene using neutron reflectivity. Polymer, 38(4), 985-989. doi:10.1016/s0032-3861(96)00719-7Wang, Y., & Hillmyer, M. A. (2001). Polyethylene-poly(L-lactide) diblock copolymers: Synthesis and compatibilization of poly(L-lactide)/polyethylene blends. Journal of Polymer Science Part A: Polymer Chemistry, 39(16), 2755-2766. doi:10.1002/pola.1254Anderson, K. S., & Hillmyer, M. A. (2004). The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer, 45(26), 8809-8823. doi:10.1016/j.polymer.2004.10.047Singh, G., Bhunia, H., Rajor, A., & Choudhary, V. (2010). Thermal properties and degradation characteristics of polylactide, linear low density polyethylene, and their blends. Polymer Bulletin, 66(7), 939-953. doi:10.1007/s00289-010-0367-xDjellali, S., Haddaoui, N., Sadoun, T., Bergeret, A., & Grohens, Y. (2013). Structural, morphological and mechanical characteristics of polyethylene, poly(lactic acid) and poly(ethylene-co-glycidyl methacrylate) blends. Iranian Polymer Journal, 22(4), 245-257. doi:10.1007/s13726-013-0126-6Brito, G. F., Agrawal, P., & Mélo, T. J. A. (2016). Mechanical and Morphological Properties of PLA/BioPE Blend Compatibilized with E-GMA and EMA-GMA Copolymers. Macromolecular Symposia, 367(1), 176-182. doi:10.1002/masy.201500158Zolali, A. M., & Favis, B. D. (2018). Toughening of Cocontinuous Polylactide/Polyethylene Blends via an Interfacially Percolated Intermediate Phase. Macromolecules, 51(10), 3572-3581. doi:10.1021/acs.macromol.8b00464Xu, Y., Loi, J., Delgado, P., Topolkaraev, V., McEneany, R. J., Macosko, C. W., & Hillmyer, M. A. (2015). Reactive Compatibilization of Polylactide/Polypropylene Blends. Industrial & Engineering Chemistry Research, 54(23), 6108-6114. doi:10.1021/acs.iecr.5b00882Quiles-Carrillo, L., Fenollar, O., Balart, R., Torres-Giner, S., Rallini, M., Dominici, F., & Torre, L. (2020). A comparative study on the reactive compatibilization of melt-processed polyamide 1010/polylactide blends by multi-functionalized additives derived from linseed oil and petroleum. Express Polymer Letters, 14(6), 583-604. doi:10.3144/expresspolymlett.2020.48Detyothin, S., Selke, S. E. M., Narayan, R., Rubino, M., & Auras, R. A. (2015). Effects of molecular weight and grafted maleic anhydride of functionalized polylactic acid used in reactive compatibilized binary and ternary blends of polylactic acid and thermoplastic cassava starch. Journal of Applied Polymer Science, 132(28), n/a-n/a. doi:10.1002/app.42230Semba, T., Kitagawa, K., Ishiaku, U. S., Kotaki, M., & Hamada, H. (2006). Effect of compounding procedure on mechanical properties and dispersed phase morphology of poly(lactic acid)/polycaprolactone blends containing peroxide. Journal of Applied Polymer Science, 103(2), 1066-1074. doi:10.1002/app.25311Srimalanon, P., Prapagdee, B., Markpin, T., & Sombatsompop, N. (2018). Effects of DCP as a free radical producer and HPQM as a biocide on the mechanical properties and antibacterial performance of in situ compatibilized PBS/PLA blends. Polymer Testing, 67, 331-341. doi:10.1016/j.polymertesting.2018.03.017Wang, N., Yu, J., & Ma, X. (2007). Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion. Polymer International, 56(11), 1440-1447. doi:10.1002/pi.2302Ferri, J. M., Samper, M. D., García-Sanoguera, D., Reig, M. J., Fenollar, O., & Balart, R. (2016). Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid). Journal of Materials Science, 51(11), 5356-5366. doi:10.1007/s10853-016-9838-2Arrieta, M. P., Samper, M. D., López, J., & Jiménez, A. (2014). Combined Effect of Poly(hydroxybutyrate) and Plasticizers on Polylactic acid Properties for Film Intended for Food Packaging. Journal of Polymers and the Environment, 22(4), 460-470. doi:10.1007/s10924-014-0654-yButt, H.-J., Cappella, B., & Kappl, M. (2005). Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 59(1-6), 1-152. doi:10.1016/j.surfrep.2005.08.003Frybort, S., Obersriebnig, M., Müller, U., Gindl-Altmutter, W., & Konnerth, J. (2014). Variability in surface polarity of wood by means of AFM adhesion force mapping. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 82-87. doi:10.1016/j.colsurfa.2014.05.055Derjaguin, B. V., Muller, V. M., & Toporov, Y. P. (1994). Effect of contact deformations on the adhesion of particles. Progress in Surface Science, 45(1-4), 131-143. doi:10.1016/0079-6816(94)90044-2Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940Li, Z.-M., Yang, W., Xie, B.-H., Yang, S. ., Yang, M.-B., Feng, J.-M., & Huang, R. (2003). Effects of compatibilization on the essential work of fracture parameters of in situ microfiber reinforced poly(ethylene terephtahalate)/polyethylene blend. Materials Research Bulletin, 38(14), 1867-1878. doi:10.1016/j.materresbull.2003.07.007Ma, P., Hristova-Bogaerds, D. G., Goossens, J. G. P., Spoelstra, A. B., Zhang, Y., & Lemstra, P. J. (2012). Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. European Polymer Journal, 48(1), 146-154. doi:10.1016/j.eurpolymj.2011.10.015Garcia-Garcia, D., Rayón, E., Carbonell-Verdu, A., Lopez-Martinez, J., & Balart, R. (2017). Improvement of the compatibility between poly(3-hydroxybutyrate) and poly(ε-caprolactone) by reactive extrusion with dicumyl peroxide. European Polymer Journal, 86, 41-57. doi:10.1016/j.eurpolymj.2016.11.018Zhou, Y., Wang, J., Cai, S.-Y., Wang, Z.-G., Zhang, N.-W., & Ren, J. (2018). Effect of POE-g-GMA on mechanical, rheological and thermal properties of poly(lactic acid)/poly(propylene carbonate) blends. Polymer Bulletin, 75(12), 5437-5454. doi:10.1007/s00289-018-2339-5Sewda, K., & Maiti, S. N. (2013). Dynamic mechanical properties of high density polyethylene and teak wood flour composites. Polymer Bulletin, 70(10), 2657-2674. doi:10.1007/s00289-013-0941-0Gao, J., Bai, H., Zhang, Q., Gao, Y., Chen, L., & Fu, Q. (2012). Effect of homopolymer poly(vinyl acetate) on compatibility and mechanical properties of poly(propylene carbonate)/poly(lactic acid) blends. Express Polymer Letters, 6(11), 860-870. doi:10.3144/expresspolymlett.2012.92Ma, X., Yu, J., & Wang, N. (2005). Compatibility characterization of poly(lactic acid)/poly(propylene carbonate) blends. Journal of Polymer Science Part B: Polymer Physics, 44(1), 94-101. doi:10.1002/polb.20669Lu, X., Tang, L., Wang, L., Zhao, J., Li, D., Wu, Z., & Xiao, P. (2016). Morphology and properties of bio-based poly (lactic acid)/high-density polyethylene blends and their glass fiber reinforced composites. Polymer Testing, 54, 90-97. doi:10.1016/j.polymertesting.2016.06.025Zhao, M., Ding, X., Mi, J., Zhou, H., & Wang, X. (2017). Role of high-density polyethylene in the crystallization behaviors, rheological property, and supercritical CO2 foaming of poly (lactic acid). Polymer Degradation and Stability, 146, 277-286. doi:10.1016/j.polymdegradstab.2017.11.003Quitadamo, A., Massardier, V., Santulli, C., & Valente, M. (2018). Optimization of Thermoplastic Blend Matrix HDPE/PLA with Different Types and Levels of Coupling Agents. Materials, 11(12), 2527. doi:10.3390/ma11122527Gallego, R., López-Quintana, S., Basurto, F., Núñez, K., Villarreal, N., & Merino, J. C. (2013). Synthesis of new compatibilizers to poly(lactic acid) blends. Polymer Engineering & Science, 54(3), 522-530. doi:10.1002/pen.23589Lovinčić Milovanović, V., Hajdinjak, I., Lovriša, I., & Vrsaljko, D. (2019). The influence of the dispersed phase on the morphology, mechanical and thermal properties of PLA/PE‐LD and PLA/PE‐HD polymer blends and their nanocomposites with TiO 2 and CaCO 3. Polymer Engineering & Science, 59(7), 1395-1408. doi:10.1002/pen.25124Ji, D., Liu, Z., Lan, X., Wu, F., Xie, B., & Yang, M. (2013). Morphology, rheology, crystallization behavior, and mechanical properties of poly(lactic acid)/poly(butylene succinate)/dicumyl peroxide reactive blends. Journal of Applied Polymer Science, 131(3), n/a-n/a. doi:10.1002/app.39580Vrsaljko, D., Macut, D., & Kovačević, V. (2014). Potential role of nanofillers as compatibilizers in immiscible PLA/LDPE Blends. Journal of Applied Polymer Science, 132(6), n/a-n/a. doi:10.1002/app.4141

    The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water.

    Get PDF
    International audience; Mitochondria are remarkably plastic organelles constantly changing their shape to fulfil their various functional activities. Although the osmotic movement of water into and out of the mitochondrion is central for its morphology and activity, the molecular mechanisms and the pathways for water transport across the inner mitochondrial membrane (IMM), the main barrier for molecules moving into and out of the organelle, are completely unknown. Here, we show the presence of a member of the aquaporin family of water channels, AQP8, and demonstrate the strikingly high water permeability (Pf) characterizing the rat liver IMM. Immunoblotting, electron microscopy, and biophysical studies show that the largest mitochondria feature the highest AQP8 expression and IMM Pf. AQP8 was also found in the mitochondria of other organs, whereas no other known aquaporins were seen. The osmotic water transport of liver IMM was partially inhibited by the aquaporin blocker Hg2+, while the related activation energy remained low, suggesting the presence of a Hg2+-insensitive facilitated pathway in addition to AQP8. It is suggested that AQP8-mediated water transport may be particularly important for rapid expansions of mitochondrial volume such as those occurring during active oxidative phosphorylation and those following apoptotic signals

    Detection and discrimination of organophosphorus pesticides in water by using a colorimetric probe array

    Full text link
    [EN] Detection and discrimination of several organophosphorus pesticides in water using a colorimetric probe array containing twelve dyes has been achieved. A clear discrimination for malathion, leptophos, dichlorvos, dibrom and diazinon was observed. The array was used to determine the concentration of diazinon in orange leavesThe financial support from the Spanish Government (project MAT2012-38429-C04), the Generalitat Valenciana (project PROM-ETEO/2009/016) and the Universitat Politecnica de Valencia (project ref. 2711) is gratefully acknowledged. SCSIE (Universidad de Valencia) is also acknowledged for all the equipment employed.Ferri, D.; Gaviña, P.; Costero, AM.; Parra, M.; Vivancos, J.; Martínez-Máñez, R. (2014). Detection and discrimination of organophosphorus pesticides in water by using a colorimetric probe array. Sensors and Actuators B Chemical. 202:727-731. https://doi.org/10.1016/j.snb.2014.06.011S72773120

    Processing and characterization of binary poly(hydroxybutyrate) (PHB) and poly(caprolactone) (PCL) blends with improved impact properties

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00289-016-1659-6[EN] The present work is focused on the development of binary blends from poly(hydroxybutyrate) (PHB) and poly(caprolactone) (PCL). Miscibility, mechanical and thermal properties as well as blends morphology are evaluated in terms of the blend composition. Binary PHB PCL blends were manufactured by melt compounding in a twin screw co-rotating extruder and injection molded. The composition of PHB PCL covered the full range between individual polymers at 25 wt% increments. The obtained results show that PCL acts as an impact modifier, thus leading to an increase in flexibility and ductility as the PCL content in the PHB PCL blends increases with a noticeable increase in elongation at break and on the energy absorption in impact conditions. The tensile strength and the elastic modulus decrease with increasing PCL content in the PHB PCL blends; nevertheless, the flexural strength and the flexural modulus reach the highest values for the PHB PCL blends containing 25 wt% PCL, with a remarkable decrease over this composition. The analysis of fractured surfaces by field emission scanning electron microscopy and thermal properties obtained by differential scanning calorimetry (DSC) and TGA give clear evidences of the immiscibility of these two biodegradable polymers. Additionally, DSC results showed an increase in crystallinity of both PHB and PCL with regard to individual polymers for PHB PCL blends containing 25 wt% PCL. Furthermore, an increase in the degradation onset (T0) of about 30 C higher was detected for the same blends. Dynamic mechanical thermal analysis showed slightly shifted glass transition temperatures of each individual polymer, thus indicating that although both PHB and PCL are not fully miscible, some interactions between them occur.This research was supported by the Ministry of Economy and Competitiveness-MINECO, Ref: MAT2014-59242-C2-1-R. The authors also thank the "Conselleria d'Educacio, Cultura i Esport"-Generalitat Valenciana, Ref: GV/2014/008 for financial support. D. Garcia-Garcia thanks the Spanish Ministry of Education, Culture and Sports for their financial support through an FPU Grant (FPU13/06011).García García, D.; Ferri Azor, JM.; Boronat Vitoria, T.; López-Martínez, J.; Balart Gimeno, RA. (2016). Processing and characterization of binary poly(hydroxybutyrate) (PHB) and poly(caprolactone) (PCL) blends with improved impact properties. Polymer Bulletin. 73(12):3333-3350. https://doi.org/10.1007/s00289-016-1659-6S333333507312Arrieta MP, Samper MD, López J, Jiménez A (2014) Combined effect of poly(hydroxybutyrate) and plasticizers on polylactic acid properties for film intended for food packaging. J Polym Environ 22:460–470. doi: 10.1007/s10924-014-0654-yZhang M, Thomas NL (2011) Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties. Adv Polym Technol 30:67–79. doi: 10.1002/adv.20235Simoes CL, Viana JC, Cunha AM (2009) Mechanical properties of poly(epsilon-caprolactone) and poly(lactic acid) blends. J Appl Polym Sci 112:345–352. doi: 10.1002/app.29425Wei L, Liang S, McDonald AG (2015) Thermophysical properties and biodegradation behavior of green composites made from polyhydroxybutyrate and potato peel waste fermentation residue. Ind Crops Prod 69:91–103. doi: 10.1016/j.indcrop.2015.02.011Dias M, Moraes Antunes MC, Santos AR Jr, Felisberti MI (2008) Blends of poly(3-hydroxybutyrate) and poly(p-dioxanone): miscibility, thermal stability and biocompatibility. J Mater Sci Mater Med 19:3535–3544. doi: 10.1007/s10856-008-3531-1Catiker E, Sancaktar E (2014) Blends of poly(3-hydroxybutyrate) with poly(b-alanine) and its derivatives. J Appl Polym Sci 131:40484. doi: 10.1002/app.40484Janigova I, Lacik I, Chodak I (2002) Thermal degradation of plasticized poly(3-hydroxybutyrate) investigated by DSC. Polym Degrad Stab 77:35–41. doi: 10.1016/s0141-3910(02)00077-0Abdelwahab MA, Flynn A, Chiou B-S, Imam S, Orts W, Chiellini E (2012) Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polym Degrad Stab 97:1822–1828. doi: 10.1016/j.Polymdegradstab.05.036Ma P, Cai X, Wang W, Duan F, Shi D, Lemstra PJ (2014) Crystallization behavior of partially crosslinked poly(beta-hydroxyalkonates)/poly(butylene succinate) Blends. J Appl Polym Sci 131:41020. doi: 10.1002/app.41020Ma P, Hristova-Bogaerds DG, Zhang Y, Lemstra PJ (2014) Enhancement in crystallization kinetics of the bacterially synthesized poly(beta-hydroxybutyrate) by poly(butylene succinate). Polym Bull 71:907–923. doi: 10.1007/s00289-014-1101-xAl-Salah HA (1998) Crystallization and morphology of poly(ethylene succinate) and poly(beta-hydroxybutyrate) blends. Polym Bull 41:593–600. doi: 10.1007/s002890050406Gassner F, Owen AJ (1994) Physical-properties of poly(beta-hydroxybutyrate) poly(epsilon-caprolactone) blends. Polymer 35:2233–2236. doi: 10.1016/0032-3861(94)90258-5Lovera D, Marquez L, Balsamo V, Taddei A, Castelli C, Muller AJ (2007) Crystallization, morphology, and enzymatic degradation of polyhydroxybutyrate/polycaprolactone (PHB/PCL) blends. Macromol Chem Phys 208:924–937. doi: 10.1002/macp.200700011Kim BO, Woo SI (1998) Compatibilizing capability of poly(beta-hydroxybutyrate-co-epsilon-caprolactone) in the blend of poly(beta-hydroxybutyrate) and poly(epsilon-caprolactone). Polym Bull 41:707–712. doi: 10.1007/s002890050422Valdes Garcia A, Ramos Santonja M, Beltran Sanahuja A, del Carmen Garrigos Selva M (2014) Characterization and degradation characteristics of poly (epsilon-caprolactone)-based composites reinforced with almond skin residues. Polym Degrad Stab 108:269–279. doi: 10.1016/j.polymdegradstab.2014.03.011Patricio T, Bartolo P (2013) Thermal stability of PCL/PLA blends produced by physical blending process. Procedia Eng 59:292–297. doi: 10.1016/j.proeng.2013.05.124Harrison KL, Jenkins MJ (2004) The effect of crystallinity and water absorption on the dynamic mechanical relaxation behaviour of polycaprolactone. Polym Int 53:1298–1304. doi: 10.1002/pi.1517Fukushima K, Luis Feijoo J, Yang M-C (2013) Comparison of abiotic and biotic degradation of PDLLA, PCL and partially miscible PDLLA/PCL blend. Eur Polym J 49:706–717. doi: 10.1016/j.eurpolymj.2012.12.011Li Y, Dong Q, Han C, Bian Y, Zhang X, Dong L (2014) Toward environment-friendly composites of poly(e-caprolactone) reinforced with stereocomplex-type poly(L-lactide)/poly(D-lactide). J Appl Polym Sci 131:40208. doi: 10.1002/app.40208Imre B, Pukanszky B (2013) Compatibilization in bio-based and biodegradable polymer blends. Eur Polym J 49:1215–1233. doi: 10.1016/j.eurpolymj.2013.01.019Hinueber C, Haeussler L, Vogel R, Bruenig H, Heinrich G, Werner C (2011) Hollow fibers made from a poly(3-hydroxybutyrate)/poly-epsilon-caprolactone blend. eXPRESS Polym Lett 5:643–652. doi: 10.3144/expresspolymlett.2011.62Kumagai Y, Doi Y (1992) Enzymatic degradation and morphologies of binary blends of microbial poly(3-hydroxy butyrate) with poly(epsilon-caprolactone), poly(1,4-butylene adipate and poly(vinyl acetate). Polym Degrad Stab 36:241–248. doi: 10.1016/0141-3910(92)90062-aAvella M, Martuscelli E, Raimo M (2000) Review—properties of blends and composites based on poly(3-hydroxy)butyrate (PHB) and poly(3-hydroxybutyrate-hydroxyvalerate) (PHBV) copolymers. J Mater Sci 35:523–545. doi: 10.1023/a:1004740522751Katsumata K, Saito T, Yu F, Nakamura N, Inoue Y (2011) The toughening effect of a small amount of poly(epsilon-caprolactone) on the mechanical properties of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/PCL blend. Polym J (Tokyo, Jpn) 43:484–492. doi: 10.1038/pj.2011.12Monticelli O, Calabrese M, Gardella L, Fina A, Gioffredi E (2014) Silsesquioxanes: novel compatibilizing agents for tuning the microstructure and properties of PLA/PCL immiscible blends. Eur Polym J 58:69–78. doi: 10.1016/j.eurpolymj.2014.06.021Prakalathan K, Mohanty S, Nayak SK (2014) Reinforcing effect and isothermal crystallization kinetics of poly(3-hydroxybutyrate) nanocomposites blended with organically modified montmorillonite. Polym Compos 35:999–1012. doi: 10.1002/pc.22746Wang L, Zhu W, Wang X, Chen X, Chen G-Q, Xu K (2008) Processability modifications of poly(3-hydroxybutyrate) by plasticizing, blending, and stabilizing. J Appl Polym Sci 107:166–173. doi: 10.1002/app.27004Mofokeng JP, Luyt AS (2015) Morphology and thermal degradation studies of melt-mixed poly(hydroxybutyrate-co-valerate) (PHBV)/poly(epsilon-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler. J Mater Sci 50:3812–3824. doi: 10.1007/s10853-015-8950-

    Hybrids of Cinchona Alkaloids and Bile Acids as Antiparasitic Agents against Trypanosoma cruzi

    Get PDF
    The current chemotherapy of Chagas disease needs to be urgently improved. With this aim, a series of 16 hybrids of Cinchona alkaloids and bile acids were prepared by functionalization at position C-2 of the quinoline nucleus by a radical attack of a norcholane substituent via a Barton Zard decarboxylation reaction. The antitrypanosomal activity of the hybrids was tested on different stages and strains of T. cruzi. In particular, eight out of 16 hybrids presented an IC50 ≤1 μg/mL against trypomastigotes of the CL Brener strain and/or a selectivity index higher than 10. These promising hybrids yielded similar results when tested on trypomastigotes from the RA strain of T. cruzi (discrete typing unit?DTU?VI). Surprisingly, trypomastigotes of the Y strain (DTU II) were more resistant to benznidazole and to most of the hybrids than those of the CL Brener and RA strains. However, the peracetylated and non-acetylated forms of the cinchonine/chenodeoxycholic bile acid conjugate 4f and 5f were the most trypanocidal hybrids against Y strain trypomastigotes, with IC50 values of 0.5 and 0.65 μg/mL, respectively. More importantly, promising results were observed in invasion assays using the Y strain, where hybrids 5f and 4f induced a significant reduction in intracellular amastigotes and on the release of trypomastigotes from infected cells.Fil: Musikant, Alejandro Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Lavarrier, Aurelie. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; ArgentinaFil: Bernal Gimenez, Diana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ferri, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Palermo, Jorge Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; ArgentinaFil: Edreira, Martin Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. University of Pittsburgh; Estados Unido

    Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3-hydroxybutyrate)

    Full text link
    This is the accepted version of the following article: Garcia-Garcia, D.; J. M. Ferri; N. Montanes; López-Martínez, J.; R. Balart (2016). Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3-hydroxybutyrate). Polymer International. 65(10):1157-1164. doi:10.1002/pi.5164.], which has been published in final form at http://dx.doi.org/10.1002/pi.5164.The effect of various epoxidized vegetable oils as potential plasticizers for poly(3-hydroxybutyrate) (PHB) was evaluated in terms of changes in mechanical and thermal properties and morphology. PHB is a biodegradable aliphatic polyester obtained from bacterial fermentation. High stiffness and fragility are two of its main drawbacks. To overcome this behaviour, PHB was plasticized with various amounts of two different epoxidized vegetable oils: epoxidized linseed oil (ELO) and epoxidized soybean oil (ESBO). The total ELO and ESBO content varied in the range 5 phr (per hundred resin) to 20 phr and plasticized PHB materials were obtained by melt extrusion and compounding followed by injection moulding. The results show that the plasticizing effect provided by ELO is more efficient than that by ESBO with balanced properties at a concentration of 10 phr ELO. ELO addition leads to an improvement in mechanical ductile properties with a noticeable increase in elongation at break and impact absorbed energy. With regard to thermal properties, the addition of both ELO and ESBO leads to a marked increase in thermal stability of PHB. All these findings suggest that addition of 10 phr ELO leads to optimized PHB formulations with potential uses in technical applications. (c) 2016 Society of Chemical IndustryThis research was supported by the Ministry of Economy and Competitiveness-MINECO, Ref. MAT2014-59242-C2-1-R. The authors also thank the Conselleria d'Educacio, Cultura i Esport -Generalitat Valenciana, Ref. GV/2014/008, for financial support. DG-G thanks the Spanish Ministry of Education, Culture and Sports for financial support through an FPU grant (FPU13/06011).García García, D.; Ferri Azor, JM.; Montañés Muñoz, N.; López-Martínez, J.; Balart Gimeno, RA. (2016). Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3-hydroxybutyrate). Polymer International. 65(10):1157-1164. https://doi.org/10.1002/pi.5164S11571164651
    corecore